Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.04.04.588067

ABSTRACT

Appropriate cellular recognition of viruses is essential for the generation of effective innate and adaptive antiviral immunity. Viral sensors and their signalling components thus provide a crucial first line of host defence. Many exhibit subcellular relocalisation upon activation, triggering expression of interferon and antiviral genes. To identify novel signalling factors we analysed protein relocalisation on a global scale during viral infection. CREB Regulated Transcription Coactivators-2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon a diversity of viral stimuli, in diverse cell types. This movement was depended on Mitochondrial Antiviral Signalling Protein (MAVS), cyclo-oxygenase proteins and protein kinase A. We identify a key effect of transcription stimulated by CRTC2/3 translocation as production of the pro-fibrogenic cytokine interleukin-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2.


Subject(s)
Fibrosis
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.16.22282338

ABSTRACT

Certain serum proteins, including CRP and D-dimer, have prognostic value in patients with SARS-CoV-2 infection. Nonetheless, these factors are non-specific, and provide limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations which drive the pathogenesis of severe COVID-19. To identify novel cellular phenotypes associated with disease progression, we here describe a comprehensive, unbiased analysis of the total and plasma membrane proteomes of PBMCs from a cohort of 40 unvaccinated individuals with SARS-CoV-2 infection, spanning the whole spectrum of disease severity. Combined with RNA-seq and flow cytometry data from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing cumulative immune cell dysregulation in progressive disease. In particular, the cell surface proteins CEACAMs1, 6 and 8, CD177, CD63 and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CD177+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilisation of these markers may facilitate real-time patient assessment by flow cytometry, and identify immune cell populations that could be targeted to ameliorate immunopathology.


Subject(s)
COVID-19
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1850393.v1

ABSTRACT

Modified vaccinia Ankara (MVA) immunisation is being deployed to curb the current outbreak of monkeypox in multiple countries1. Originally authorized for vaccination against smallpox, MVA is a vaccinia virus (VACV) strain that does not replicate in human cells or cause serious adverse events. Here, we conducted a highly multiplexed proteomic analysis2 to quantify ~7,500 cellular proteins and ~80% of viral proteins at five time points throughout MVA infection of human cells3. >380 human proteins were down-regulated >2-fold by MVA, revealing a profound remodelling of the host proteome. >25% of these MVA targets, including multiple components of the nuclear pore complex (NPC), were not shared with VACV-Western Reserve4, which is derived from a first generation smallpox vaccine associated with serious adverse events. Using pharmacological inhibition of viral DNA replication and killed virions, we discovered that post-replicative gene expression is necessary for the downregulation of NPC proteins and for elements of MVA antagonism of innate immune sensing. Our approach thus provides the first global view of the impact of MVA infection on the host proteome, offers insights into how MVA interacts with the antiviral defences and identifies cellular mechanisms that may underpin the abortive infection of human cells. These discoveries will prove vital to the rational design of future generations of vaccines.


Subject(s)
Vaccinia
SELECTION OF CITATIONS
SEARCH DETAIL